Tutorial Week 3

Trigonometric Substitution (Trig Sub)

The method of Trig sub takes advantage of your trig identities to simplify integrals and in a way, it’s just fancy and strategic U-sub. Refer to the following table for which substitution to use:

Expression

\(\sqrt{a^2-x^2}\)

\(\sqrt{a^2+x^2}\)

\(\sqrt{x^2-a^2}\)

Substitution

\(x=a\sin \theta\)

\(x=a\tan \theta\)

\(x=a\sec \theta\)

Domain

\(\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]\)

\(\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})\)

\(\theta \in [0, -\frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]\)

Q1: Integrate \(\int \frac{1}{\sqrt{x^2 + 10x + 27}} dx\).

../../_images/115.jpeg

Practice Questions

C1: Rewrite \(tan(sec^{-1}(x))\) without trig functions (using a triangle).

C2: Integrate \(\int \frac{1}{\sqrt{49 + x^2}} dx\). (Hint: \(\int sec(x) = ln|sec(x) + tan(x)| + C\) from week 1)

C3: Find the PFD of \(\frac{x^{2}+x+2}{x^{3}+x^{2}+x+1}\).