Tutorial Week 10
Recursively defined Functions
Q1: Show that the sequence \(a_1 = 1\) \(a_{n+1} = \sqrt{2a_n + 8}\) converges and find the limit it converges to.
Conditions for convergent series
Q2: Show that the following series are divergent.
a. \(\sum_1^\infty 1 - \arctan(n)\)
\(\;\)
b. \(\sum_1^\infty 3(-1)^n\)
\(\;\)
c. \(\sum_1^\infty \frac{1}{1 + 2^{-n} - 5^{-4n}}\)