Q1: Given the sequence \(\{ a_n \}\) where \(a_n = \frac{(n + n^2)^{\frac{1}{3}}}{n}\), find if it converges or diverges. If it converges, find the limit.
Q2: Given the sequence \(\{ a_n \}\) where \(a_n = sin(n) \frac{log_3(n)}{log_8(n)}\), find if it converges or diverges. If it converges, find the limit.
Monotone Convergence Theorem (MCT) and Convergence
Q3: Show that the sequence \(a_n = \frac{2n-1}{3n+4}\) is monotonic.
Q4: Show how you can use MCT to prove that the sequence \(\{ \frac{n}{e^n} + 1 \}\) is convergent.