Tutorial Week 3
Unbounded Regions
Q1: Find the minimal value of \(Z =x+3y\) given the constraints \(\begin{cases} 2x+4y\ge6 \\ 5x+y\ge5 \\ x, y \ge 0 \end{cases}\).
Q2: Is there a maximal value for the above function \(Z\)?
Numbers of Solutions
Q3: For the above question, if \(Z = x + 2y\), how many solutions would there be?
Matrices
Q4: Evaluate the following.
\(-3 \cdot \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}\)
\(\rule{0pt}{4ex}\) 2. \(\begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 5 \\ 3 & 4 \end{bmatrix}\)
\(\rule{0pt}{4ex}\) 3. \(\begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 5 \\ 3 & 4 \end{bmatrix}\)?