Tutorial Week 4
In this tutorial, we’ll be mainly focusing on limits and the different ways to find limits.
Proof of Trigonometric Limit Identities
Prove why \(\lim_{x \to 0} \frac{\sin(x)}{x} = 1\).

Squeeze Theorem
Q1: What is \(\lim_{x \to 0}\; xtan^{-1}(\dfrac{1}{x})\)?
Q2: Calculate \(lim_{x \to \infty} \; \dfrac{3x^2 + \sin(x^3)}{4x^2 - 2}\).
Indeterminant Forms
Q3: Do the following lead to interdeterminate forms?
\(\lim_{x \to 3} \frac{x + 2}{x - 3}\)
\(\lim_{x \to 0} \frac{e^{-2x}}{e^{3x}}\)
\(\lim_{x \to \infty} \frac{ln(x)}{x}\)
\(\lim_{x \to \infty} \frac{e^{-2x}}{e^{3x}}\)
\(\lim_{x \to 0} \frac{1}{x^2} + \dfrac{1}{3x^2}\)
\(\lim_{x \to \infty} (\frac{1}{x})^{x}\)