Tutorial Week 6

This week, we’ll be looking more into derivatives.

Graphing differentiability

Q1: Sketch the graph of a function that:

  1. Has a corner at \(x = -3\)

  2. Is discontinuous at \(x = -1\)

  3. Has a vertical tangent at \(x = 0\)

  4. Has a domain of \((-\infty, \infty)\)

../../_images/15.jpg

Derivative Notation

Q2: Find \(f'(x)\) if \(f(x) = 3g(k(x)) - h(x)k(x)\).

../../_images/24.jpg

Q3: Find \(\frac{df}{dx} |_{x = 3}\) if \(f(x) = x^4 + k\) for some constant \(k\).

../../_images/33.jpg

Q4: Given functions \(f(x) = 4h(x)^2\), \(g(x) = 2f(x)\), \(h'(x) = x\), \(\frac{dg}{dx} = 8x^3 + 16x\), find \(h(x)\).

../../_images/44.jpg

Q5: Given \(f(x) = x^3\), \(h\) is a function defined in terms of \(f(x)\), and \(\frac{dh}{df} = 5\), find \(\frac{dh}{dx}\).

../../_images/54.jpg

Derivatives with absolute values

Q6: Find the derivative of \(f(x) = cos(x) - |x|^3\).

../../_images/64.jpg

Q7: Find the derivative of \(f(x) = |x + 2| + (|x - 2|)^2\).

../../_images/74.jpg

Computing derivatives

Q8: Find the derivative of \(cos(sin(tan(x))) \cdot 2x^{e}\).

../../_images/84.jpg

Q9: Find the derivative of \(sec(\frac{csc(x)}{3x^3})\).

../../_images/94.jpg

Q10: Find the derivative of \(\sqrt[4]{2x^3 - 4x} + 4\).

../../_images/104.jpg

Derivative tables

Q11: Given \(f(x) = g(h(x))\), find \(g'(3)\).

\(x\)

\(h(x)\)

\(h'(x)\)

\(f'(x)\)

1

2

1

2

2

3

-3

1

3

5

4

-4

../../_images/114.jpg

Q12: Using the below table, find the equation of the line perpendicular to \(f(x)\) at \(x = 1\).

\(x\)

\(f(x)\)

\(f'(x)\)

1

7

-2

2

-3

-3

3

2

-5

../../_images/122.jpg

Piecewise function differentiability

Q13: Which values of \(k\) make \(f(x) = \begin{cases} kx^2 + k & \text{if } x \leq 1 \\ 2kx + k - 2 & \text{if } x \gt 1 \end{cases}\) continuous on its domain. Are there any values of \(k\) that make it differentiable on its domain?

../../_images/131.jpg